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Chapter 1

Introduction

1.1 Motivation

Ordinal data appear in many areas of applications including manufacturing,
social science, communications and medical research. Often the only way to
measure some variables is in the form of ratings (e.g. good, fair and bad).
Such data have been studied extensively in the independent case or regression
situation and methods of inference have been developed (e.g. Johnson and
Albert. [1999]). In this research we consider ordinal data that are spatially
dependent . For example, suppose we have recorded some geographical data
by counties. We would expect data from nearby counties to be dependent.
Similarly in manufacturing settings we may measure a variable in different
locations and be concerned about dependence between these locations. For
example, in integrated circuit (IC) manufacturing hundreds of integrated
circuits are fabricated simultaneously on a disk of silicone called a wafer
(Figure 1.1). At the end of the process all chips are tested for various failure
modes. Some of the tests correspond to tighter specification limits on the
same characteristics, so the responses are ordinal in nature.

The simplest type of ordinal data occurs when we have only two cate-
gories. Autologistic models for binary data have been known for some time,
and inference methods have been studied. Ising [1925] discussed a simple
homogeneous first-order auto-logistic model on a countable regular lattice.
These models have been of interest to physicists for some time (e.g., Ruelle
[1969]). We will describe these models later.

We can think of binary data as a black and white picture. One of the

1
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Figure 1.1: Example of a wafer. Each square represents one chip. Colors
represent different failure modes. White color represents good chips. Tests
are done in alphabetical order.
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extensions to such data model is a colored or multinomial model. Such a
model also could be seen as a simple way to work with ordinal data, ignoring
the ordinal nature and assuming that instead we have categorical data with
c categories or colors. Strauss [1977] introduced a model with dependence
coefficients βkl between observed variables Yi = k and Yj = l , were i and j
are neighborhood sites. Strauss was able to find approximate maximum
likelihood estimators. We will discuss this model in detail later.

Ordinal structure provides a lot of information and ignoring such structure
would be inefficient. Strauss’ model can be modified to handle ordinal data by
putting additional conditions on the βi j ’s. Unfortunately, such modification
adds additional assumptions. Instead consider the following latent variable
model. Let {Xi} be a latent continuous variable and let

Yi = k if and only if θk−1≤ Xi < θk, k∈ {1, . . . ,c},

for some set of θ0, . . . ,θc. Then instead of the spatial dependence structure
of {Yi} we may assume spatial dependence structure on {Xi}. Often such a
variable makes sense. For example, if we measure noise level as loud, normal
and quiet, then the underlying level could be a real continuous noise level. In
other cases that variable could be thought as combination of a large number
of factors. Spatial dependence is usually thought of as local dependence for
some neighborhood Ni around i. In this case {Xi , i ∈ S} is Markov random
fields (MRF). MRF and Gaussian MRF are well studied (e.g. Ord [1975])
and we will review them later.

In addition to dependence structure, there are often an explanatory vari-
ables that could be used in the model. For example, if additional information
has been collected about counties, a prediction could be based on such infor-
mation. In this case we can think about conditional regression:

(Xi |XNi
= xNi

)∼ N

(
φ ∑

j∈Ni

x j +
p

∑
k=0

βkzik,σ2

)
,

where Zi is a vector of covariates for site si , and β is a vector of regression
coefficients. Such model was also studied by Ord [1975].

However, even if {Xi , i ∈ S} is an MRF, {Yi , i ∈ S}, which is a hidden
Markov random field (HMRF), does not have a nice structure. There are
some Bayesian studies of HMRF (e.g. Künsch et al. [1995]), but their concern
is reconstruction of {Xi , i ∈ S} instead of inference of underlying parameters.

3



1.2 Scope of this Study

In this study, we view the ordinal spatial process {Yi : i ∈ S} as an indicator
variable obtained by clipping the latent continuous spatial process {Xi : i ∈S},
where S is an enumerable set of sites (generally S∈ Z2 for spatial models).
We assume that all sites are numbered 1, . . . , |S|, where |S| is total number
of sites in S. For notational simplicity we will write i ∈ S, meaning that i
is a site of the set S. Then {Yi : i ∈ S} and {Xi ; i ∈ S} are spatial processes
observed over the set Sdefined above. Let Θ = (θ0, . . . ,θc) be set of unknown
cutoff points of the continuous latent variable X, with θ0 =−∞ and θc = ∞.
Then we can write the model for obtaining {Yi : i ∈ S} as follows:

Yi = k if and only if θk−1≤ Xi < θk, i ∈ S; k∈ {1, . . . ,c}. (1.1)

We will assume that {Xi : i ∈ S} is a Gaussian spatial process

(Xi |X−i = x−i)∼ N

(
φ ∑

j∈Ni

wi j x j +µε,σ2
εi

)
, i ∈ S, (1.2)

where wi j are weights, usually taken to be wi j = 1
ni

if j ∈ Ni and 0 other-
wise for equally spaced lattice. Notation −i means all sites in S except i.
Examples of graphical representation of such latent dependence are shown
in Figure 1.2. Our goal is to make inference about ψ = (φ,θ1, . . . ,θc−1), the
parameters associated with Gaussian spatial process model with only the
indicator process {Yi : i ∈ S} observed.

Note that we did not say anything about the mean µε and variance σ2
εi
.

Without loss of generality one may assume that µε = 0 and σ2
εi

= 1− φ2

ni
, where

ni is the size of the Markovian neighborhood for site i, which will be discussed
later. Otherwise, consider the new spatial process {X∗i : i ∈ S} , where

X∗i =
Xi− µε

1− φ√
ni

σεi√
1− φ2

ni

with cut points

Θ∗ =





θ∗k =
θk− µε

1− φ√
ni

σεi√
1− φ2

ni

: k = 1, . . . ,c−1





.
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Figure 1.2: Example of a visual representation of a latent variable model
for spatial process with ordinal data. In this two examples we can see
the relation between latent Gaussian variable X and observed ordinal vari-
able Y. In the first case we have three categories with cut points Θ ={−∞,Φ−1

(1
3

)
,Φ− (2

3

)
,∞

}
, where Φ−1(·) is inverse of CDF of standard nor-

mal variable. In the second example, we have five categories and set of cut
points Θ =

{−∞,Φ−1
(1

5

)
,Φ−1

(2
5

)
,Φ−1

(3
5

)
,Φ− (4

5

)
,∞

}
.
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This process will generate exactly the same {Yi : i ∈ S} spatial process. This
phenomena suggest that cut points could be estimated up to a scale only,
and the variance σεi and location µεi are not estimable.

With above assumptions we can rewrite {Xi : i ∈ S} spatial process (1.2)
as:

(Xi |X−i = x−i)∼ N

(
φ ∑

j∈Ni

wi j x j ,1− φ2

ni

)
, i ∈ S.

This model can be rewritten in a matrix form:

X ∼ Nn(0,Λ−1), (1.3)

where Λ = (In−φW)′(In−φW) and wi j =

{
1
ni

j ∈Ni

0 otherwise
for regular equally

spaced lattice.
We can extend this model to spatial auto-regression process. For example

suppose that Z is a covariate matrix which affects the latent process according
to the following model:

X ∼ Nn(Zβ,Λ−1), (1.4)

and the response {Yi : i ∈ S} is generated by the same clipping process (1.1).
Of course, we still do not observe {Xi : i ∈ S} and therefore we need to make
an inference about (φ,Θ,β).

This study is an extension of the research by Wang [1999] on ordinal
model for time series data.

The rest of this paper is organized as follows. In Chapter 2 we will
review known random fields, models and inference methods. In Chapter
3 we will propose three methods for estimating parameters ψ, investigate
their properties and study extension to the auto-regression case. We also
will investigate the asymptotic efficiency of the estimators using simulation
study. We will conclude our paper by exploring potential future research
topics.
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Chapter 2

Literature Review

In this section we will review models and inference for random fields. We will
start with introduction of Gibbs random fields (GRF), then we will discuss
Markov random fields (MRF), and we will introduce hidden Markov random
fields (HMRF). We will also discuss important special cases and some known
inference methods. Finally, we will look at ordinal data model without spatial
correlation.

In this section we will let X = {Xi ; i ∈ S} be a continuous-valued spatial
process observed over the set Sdefined above, and Y = {Yi ; i ∈S} be a discrete
spatial process observed over the set S. We will also use the lower case
x = {xi ; i ∈ S} and y = {yi ; i ∈ S} notation for observed data.

2.1 Random Fields

2.1.1 Gibbs Random Fields (GRF)

The most general mathematical model of random field that we will study here
is Gibbs random fields (GRF) introduced by Dobrushin and Folguera [1968].
It was proposed as a natural mathematical description of an equilibrium state
of a physical system consisting of a very large number of interacting compo-
nents. A Gibbs measure on the field is a distribution of a countably infinite
family of random variables which admit some prescribed conditional prob-
abilities. GRF is defined by conditional probabilities which yield a unique
joint distribution. Technical details of GRF are given in Chapter 4.1.
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2.1.2 Markov Random Fields (MRF)

Often spatial dependence is thought of as local dependence for some neigh-
borhood Ni around i.

Definition (Neighborhood). A site j is defined to be a neighbor of site i if
the conditional distribution of Xi , given all other values, depends functionally
on x j , for j 6= i. Also let us define

Ni ≡ { j : j is a neighbor of i} (2.1)

which we will call neighborhood set of site i. Examples of such neighborhoods
will be given later.

For example, in the time series AR(1) case, a neighborhood set will consist
only of a previous observation Ni ≡ {i−1}, i > 1 and N1≡ /0. There are a lot
of different ways to define the neighborhood structure for spatial models. We
will discuss a few examples later. Now we can define a process for a given
neighborhood structure.

Definition (Markov Random Fields). Any probability measure whose
conditional distribution defines a neighborhood structure Ni through (2.1) is
defined to be a Markov random field

The Hammersley-Clifford theorem (Besag [1974]) shows that MRF is a
special case of GRF. Properties of MRF have been studied extensively (e.g.
Guyon [1995]). MRF are such important spatial processes that special cases
have been studied extensively as well. We will review some special cases later
in this section.

Negpotential Function. In order to study properties of MRF, the joint
probability function has to be computed. Often the joint probability of the
MRF can be only computed up to a constant. As a result, it makes sense to
define a function equal to joint probability only up to a constant as well.

Definition (Negpotential Function). Without loss of generality, assume
that reference value 0 can be observed as each site. Then

Q(x) = ln

{
P(x)
P(0)

}
(2.2)

is called the Negpotential Function.

8



Here without loss of generality we assume that P(0) > 0 or any other
reference level could be used. It is easy to see that knowledge of Q(·) is
equivalent to knowledge of P(·). For example, in the discrete case

P(x) =
exp{Q(x)}

∑
z

exp{Q(z)} .

Following property of Q will be useful for defining MRF models later.

Proposition (Properties of Q).

Q(x) =
n

∑
i=1

xiGi(xi)+
n−1

∑
i=1

n

∑
j=i+1

xix jGi j (xi ,x j)+

n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

xix jxkGi jk(xi ,x j ,xk)+ · · ·+

x1 . . .xnG1...n(x1 . . .xn), n = |S|.

(2.3)

A proof of this Proposition could be found in Cressie [1993]. Note that
Gi j ...(xi ,x j , . . .) in (2.3) are not uniquely defined. By defining Gi j ...(xi ,x j , . . .)≡
0 whenever xi = 0, or x j = 0, or . . . , uniqueness is obtained.

Pairwise-Only Dependence. Prior to working with MRF we have to
choose a neighborhood structure. It makes sense to choose a structure that
would make (2.3) simpler.

Definition. Pairwise-only dependence between sites is a dependence when
GA(·)≡ 0 in (2.3) for any A whose number of distinct elements is 3 or more.

An example of pairwise-only dependence would be “nearest-neighbor”
neighborhood structure of order 1 (Figure 2.1). In this case given site’s
neighborhood contains one site above, one below, one to the left, and one to
the right.

Figure 2.3 gives an example of sites numbering for 10×10 field. Neigh-
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i

Figure 2.1: “Nearest-neighbor” neighborhood structure.

i

Figure 2.2: “Checker board” neighborhood structure.

borhood sets for “nearest-neighbor” structure are

N1 = {2,11}
· · ·

N8 = {7,9,18}
· · ·

N47 = {37,46,48,57}
· · ·

N73 = {63,72,74,83}
· · ·

N100 = {90,99}.

These sets are also highlighted in the Figure 2.3 for visual demonstration.
Neighborhood sets for “checker board” (Figure 2.2) structure for the same

10



1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 2.3: Example of 10× 10 field with total of 100 sites. Examples of
“nearest-neighbor” neighborhood structure (Figure 2.1) are shown.
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field are

N1 = {12}
· · ·

N8 = {17,19}
· · ·

N47 = {36,38,56,58}
· · ·

N73 = {62,64,82,84}
· · ·

N100 = {89}.

These sets are highlighted in the Figure 2.4.

2.1.3 Hidden Markov Random Fields (HMRF)

Often instead of observing MRF process {Xi : i ∈ S} we observe a process
{Yi : i ∈ S} which is some stochastic or deterministic function of {Xi : i ∈ S}.
The ordinal latent variable model defines Yi as a deterministic function of
Xi (1.1) which is a Markov random field. As a result {Yi : i ∈ S} is a hidden
Markov random field.

2.2 Gaussian Markov Random Fields

An important special case of MRF is the Gaussian Markov random field. In
the latent variable model, we will assume that latent variable is a Gaussian
Markov random field. Gaussian fields were originally defined as 2-dimensional
generalization of Gaussian time series. It can be defined simultaneously or
conditionally. We will describe both, and show equivalence between them.
We will also describe inference for GRFs.

2.2.1 Simultaneously Specified Gaussian Markov Ran-
dom Fields

Whittle [1954] introduced the following class of stationary processes on plane
as a generalization of time series. Suppose {ε(u,v) : u = . . . ,−1,0,1, . . . ;v =

12



1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

Figure 2.4: Example of 10× 10 field with total of 100 sites. Examples of
“checker board” neighborhood structure (Figure 2.2) are shown.
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. . . ,−1,0,1, . . .} is a process of independent and identically distributed ran-
dom variables. Then we can define a process {X(u,v)} by

φ(T1,T2)X(u,v) = ε(u,v), (2.4)

where T1 and T2 are translation operator defined by

T i
1X(u,v) = X(u+ i,v),

T j
2 X(u,v) = X(u,v+ j),

and φ is given by

φ(T1,T2) = ∑
i

∑
j

ai j T
i
1T j

2 , (2.5)

where summation is done over all integers. This simultaneous specification of
the variables X(u,v) in (2.4) is analogous to the autoregressive model in time
series. The range of summation in (2.5) defines a neighborhood structure.
As an example, nearest-neighbor dependence would be specified by

φ(T1,T2) = 1−ξ(T1 +T−1
1 +T2 +T−1

2 ).

Ord [1975] summarized properties and studied estimation methods of
Whittle’s model on finite lattices for the normal (Gaussian) case. We can
write a Gaussian model on finite lattice S as:

(Xi |X−i = x−i)∼ N

(
φ ∑

j∈Ni

wi j x j ,σ

)
, i ∈ S, (2.6)

where wi j are weights, usually taken to be wi j = 1
ni

if j ∈Ni and 0 otherwise for

equally spaced lattice and S is an enumerable set of sites (generally S∈ Z2).
Model (2.6) can be rewritten in matrix form as:

X = φWX + ε. ε∼ Nn(0,σ2In). (2.7)

Clearly, E(X) = 0 and Var(X) = σ2((In−φW)′(In−φW))−1 = σ2Λ−1, where
Λ = (In− φW)′(In− φW). Since X is just a linear combination of ε that is
Gaussian,

X ∼ N(0,σ2Λ−1), Λ = (In−φW)′(In−φW).

The likelihood of (φ,σ) is given by

L(φ,σ2) ∝
|Λ| 12

σ
e−

1
2σ2 xΛx

. (2.8)

14



From (2.8) we get ML estimators as:

σ̂2 = n−1xΛx

and φ̂ as the value that maximizes (Mead [1967])

l(φ, σ̂2) ∝−n
2

ln σ̂2|Λ|− 1
n . (2.9)

Unfortunately, there is no closed form solution for (2.9) and numerical max-
imization requires evaluation of |Λ| at each step. Ord [1975] noticed that if
W has eigenvalues λ1, . . . ,λn, then

|Λ|= |In−φW|2 =

{
n

∏
i=1

(1−φλi)

}2

.

Using the fact that {λi}’s need be determined just once, prior to maximiza-
tion, ML estimator of φ is the value φ̂ that minimizes

{
n

∏
i=1

(1−φλi)

}− 2
n (

x′x−2φx′x′L +φ2x′LxL
)
, xL = Wx. (2.10)

This can be found fairly quickly.

2.2.2 Conditionally Specified Gaussian Markov Ran-
dom Fields

Instead of defining a model simultaneously for all sites, it makes sense to
define a model for a given site based on all other sites. We can write the
conditional distribution of the variable X at some site i given all other sites.
For notational purposes we will use −i to be the set of all sites except site i.
Under the condition of “pairwise-only dependence”

f (xi |x−i) = N

(
φ

n

∑
j=1

ci j x j ,σ2

)
, i = 1, . . . ,n. (2.11)

For regular equally spaced lattices (e.g. Figure 2.3) conditional weights are
usually defined as

ci j =
1
ni

, i, j ∈ S. (2.12)
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For non-regular lattices (e.g. geographical data) the weights are defined to be
inversely proportional to the distances between sites. Cressie [1993] showed
that (2.11) is identical to

X ∼ Nn(0,σ2(In−φC)−1). (2.13)

2.2.3 Comparison of Simultaneously and Condition-
ally Specified Gaussian Markov Random Fields

Brook [1964] was the first one to make a distinction between the simultaneous
specification and conditional specification of the spatial model. Cressie [1993]
showed that both models (2.7 and 2.13) are identical given that their variance
matrices are equal:

σ2(In−φC) = σ2(In−φW)′(In−φW)

or
C = φW′W−W−W′ (2.14)

Equation (2.14) gives us relation between the two models. Note that any
simultaneously specified model can be written as a conditionally specified
model, but a conditionally specified model can correspond to more than one
simultaneously specified model. Another interesting fact is that if ∑ j∈Ni

wi j x j

and εi are uncorrelated, i.e. E{εi |Xj = x j , j ∈Ni}= 0, both models are iden-
tical (Ord [1975]).

2.2.4 Spatial Auto-regression

The previous models could be extended by introducing variation in the mean
level. Ord [1975] considered the mixed regressive-autoregressive model for
the simultaneously defined model

X = Aβ+φWX + ε, ε∼ Nn(0,σ2In), (2.15)

where A is an (n× p) matrix of covariates, and β is a (p× 1) vector of
regression parameters. Ord showed that ML estimators for β and σ2 are

β̂ = (A′A)−1A′ẑ,

σ̂2 =
1
n

ẑ′Mẑ,

16



where ẑ = (In− φ̂W)x and M = In−A(A′A)−1A′. φ̂ is the value which maxi-
mizes, as before,

−n
2

ln σ̂2|Λ|− 1
n , Λ = (In−φW)′(In−φW).

For computational purposes, an equation similar to (2.10) is used:

{
n

∏
i=1

(1−φλi)

}− 2
n (

x′Mx−2φx′Mx′L +φ2x′LMxL
)
, xL = Wx,

It is important to note that instead of (2.15) auto-regressive models are often
defined as

(X−Aβ) = φW (X−Aβ)+ ε, ε∼ Nn(0,σ2In),

which is just a one-to-one reparametrization of (2.15).

2.3 Conditionally Specified Spatial Models for

Binary Data

Often instead of continuous data, discrete data is observed. In this section
we will review a few special conditionally specified spatial models for discrete
data.

2.3.1 Auto-Logistic Model for Binary Data

In order to model independed binary data an auto-logistic model is used.
A similar auto-logistic model is also defined for spatially dependent data
with a pairwise-dependent neighborhood structure. Binary spatial data can
be thought as a black and white picture. Assume that the observed data
is either 0 (white) or 1 (black). This data often arises from the absence
or presence of some characteristic. Because of the nature of the data, the
only important values of the G function in (2.3) are, assuming pairwise only
dependence between sites, Gi(1) ≡ αi and Gi j (1,1) ≡ θi j . Because of the
pair-wise only dependence all higher order terms are equal to 0. Thus,

Q(x) =
n

∑
i=1

αixi +
n−1

∑
i=1

n

∑
j=i+1

θi j xix j , (2.16)

17



where θik ≡ 0 if k 6∈Ni . It is easy to see (Cressie [1993]) that:

P(xi |x−i) = P(yi |yNi
) =

exp

{
αixi + ∑

j∈Ni

θi j xix j

}

1+exp

{
αi + ∑

j∈Ni

θi j y j

} , xi ∈ {0,1}, i ∈S, (2.17)

This is called an auto-logistic model for spatial data.

2.3.2 Ising Model

MRF has been of interest to physicists for long time. Ising [1925] discussed
a simple homogeneous first-order auto-logistic model on a countable regular
lattice D = {(u,v) : u = . . . ,−1,0,1, . . . ;v = . . . ,−1,0,1, . . .}. This model has
been extensively studied in statistical physics and is referred as the classical
Ising model (e.g., Ruelle [1969]). The model reduces to:

P(x(u,v)|{x(k, l) : (k, l) 6= (u,v)}) =
exp{g}

1+exp{g} , u,v = . . . ,−1,0,1, . . . ,

(2.18)
where

g≡ x(u,v){α+ γ(x(u−1,v)+x(u+1,v)+x(u,v−1)+x(u,v+1))} .

2.4 Conditionally Specified Spatial Models for

Multicolored Data

Models for binary data can be extended to categorical data. Categorical
spatial data can be seen as a multicolored picture, where each color represent
a category.

2.4.1 Strauss [1977] Model

Strauss [1977] generalized Ising model (2.18) to multicolored case. Suppose
instead of black and white image each site can have more than 2 colors. i.e.
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xi = 1, . . . ,c, where each number represents a color. Strauss [1977] showed
that for the pair-wise dependence neighborhood structure

Q(x) =
n

∑
i=1

xiG1(xi)+
n−1

∑
i=1

n

∑
j=i+1

xix jG1,2(xi ,x j) =

l

∑
r=1

mrur +
l

∑
r=1

l

∑
s=1

nrsvrs,

(2.19)

where ur ≡ rG(r), vrs = rsG(r,s), r,s= 1, . . . , l and mr ≡ number of sites that
have color r, nrs≡ number of pairs of neighboring sites where one has color r
and the other has color s. Under two further assumptions (color indifference
and equal strength of attraction for all colors), Strauss was able to find
approximate maximum likelihood estimates; the approximation is necessary
due to the normalizing constant ∑x exp(Q(x))

2.5 Inference for Markov Random Fields

Inference for MRF has been studied extensively, and a number of different
techniques have been developed. Below we will review a few common meth-
ods.

2.5.1 Likelihood Estimation

Let us call the collection of all unknown parameters ψ. The log-likelihood
l(ψ) is defined as

l(ψ)≡ ln{L(ψ)}= ln{P(X;ψ)}. (2.20)

By maximizing l(ψ) over ψ we can find the maximum likelihood estimator
(MLE) ψ̂ . Unfortunately, for spatial data the MLE is difficult to compute.
Even for the Gaussian case discussed above, the MLE computation requires
calculating the determinant of an |S|-dimensional matrix. The MLE could
be found for some other special cases, but in general, the MLE cannot be
computed easily.
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2.5.2 Pseudo-Likelihood Estimation

One possibility is to use an approximation to the likelihood, which is easy to
compute. Besag [1975] considered the log pseudo-likelihood

lp(ψ) ≡ ln{
n

∏
i=1

P(xi |x−i ;ψ)}

=
n

∑
i=1

ln{P(xi |x−i ;ψ)}=
n

∑
i=1

ln{P(xi |x j , j ∈Ni ;ψ)}. (2.21)

The log pseudo-likelihood (2.21) is to be maximized with respect to ψ, to
yield the maximum pseudo-likelihood estimator ψ̂P. For conditionally speci-
fied Gaussian model (2.11), maximum pseudo-likelihood estimators of these
parameters are simply the ordinary least squares estimators. For auto-logistic
model (2.16) assuming a so-called isotropic Ising model on Z2 (i.e. assume
(2.18) with γ1 = γ2) the maximum pseudo likelihood estimator is equivalent
to formal maximum likelihood estimator for the logistic regression model
(Strauss and Ikeda [1990]). This observation allows one to use the logistic-
regression option in computer packages.

2.5.3 Estimation Based on Coding

For conditionally specified models with pair-wise dependence, Besag [1974]
proposed a method of estimation called coding. The idea is to divide up the
lattice D into two disjoint sub-lattices D0 and D1, where the neighborhood
structure of D0 is the trivial one of no two sites being neighbors of each other.
Coding estimates are obtained by minimizing

C(ψ)≡− ∑
i∈D0

ln{P(xi |x−i ;ψ)}, (2.22)

which is the conditional likelihood of {X i : i ∈ D0} given {X j : j ∈ D1}. For
example, for the first order dependence model on Z2, the neighborhood struc-
tures are given by Figure 2.1. Then D0 can be constructed by deleting every
other point in D. This is clearly an inefficient way to use the data (half of the
data is deleted), but note that in this example the other half of the data could
be used in the same way. Thus, there are two possible coding estimators that
could be averaged. Usually the coding estimator is easy to compute, so in
some situations where other estimators are unavailable, this estimator is an
alternative.
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Bayesian Estimation Methods The Bayesian approach was first consid-
ered in the Geman and Geman [1984] article. They considered maximum a
posteriori (MAP) restoration of latent variable. Suppose we have observed a
spatial noisy process Z that is related to some underlying unobserved vari-
able X through probability function P(Z|X;ψ). Let π(·) denote the prior
distribution of X ∈ X. Then posterior distribution for X given Z is

P(X|Z) =
f (Z|X)π(X)R
X f (Z|τ)π(τ)dτ

(2.23)

Assuming a 0-1 loss function, the joint prediction of X given X̂ ∈ X that
maximized (2.23) is a Bayes rule and is called the maximum a posteriori
(MAP) estimator. More detailed description with examples can be found in
Geman [1988]
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Chapter 3

A Latent Variable Model for
Spatial Process with Ordinal
Data

Here we will study inference for the model introduced in Section 1.2.
For the case when {Xi : i ∈ S} is a spatial Gaussian process, inference has

been studied by Ord [1975]. In our case {Xi : i ∈ S} is not observed, and
inference has to be based on the {Yi : i ∈ S} process. The {Yi : i ∈ S} process
is a HMRF.

3.0.4 Maximum Likelihood Estimator (MLE)

The maximum likelihood estimator is commonly used, so we will consider this
estimator first. For the model described above we can write the likelihood
function:

L(Θ,φ|Y = y) ∝

θy1Z
θy1−1

θy2Z
θy2−1

. . .

θynZ
θyn−1

|Λ|1/2exp

{
−1

2
X′ΛX

}
dx1dx2 . . .dxn (3.1)

where Λ = (I−φW)′(I−φW) = Σ−1. The likelihood function is to be be maxi-
mized with respect to ψ′ = (phi,θ′), to yield the maximum likelihood estima-
tor ψ̂. Evaluation of (3.1) involves an n-dimensional integral of a multivariate
normal. For a simple lattice of size 20×20, n = 400 which could be numer-
ically evaluated using numerical methods described above, but calculation
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time even for a single integration takes very long. Numerical maximization
is not feasible at the present time.

3.0.5 Numerical Computations of Multidementional Nor-
mal Integral

During computation of the MLE and other estimators, numerical compu-
tation of the multivariate normal integral is required. A fast and highly
accurate algorithm for univariate normal could be found in Johnson et al.
[1994]. There is also reliable and efficient software available for the bivariate
case (e.g. Donnelly [1973]). However, higher dimensional cases are not that
easy to compute.
Numerical Integration Method Schervish [1984] developed an algorithm
for evaluation of multivariate normal integral based on numerical integral
evaluation methods. This particular algorithm is based on Simpson’s rule
integration. Efficient error control permits computation of integrals up to
a small error. The algorithm is fairly efficient for the two and three dimen-
sional case, but the amount of the computation increases exponentially as the
number of variables increases. As a result, even 5-dimensional integral is not
practical to compute today. The nearest neighborhood structure described
above consists of 4 sites per neighborhood which results in 5-dimensional
integration for quasi-likelihood estimation.
Gaussian Quadratures Method Drezner [1990] developed a more efficient
algorithm for evaluation of multivariate normal integrals based on Gaussian
quadratures. The computational speed of this method is linearly proportional
to the number of variables. However, the error rate is not as easily controlled
because of the irregular set of weights that have to be computed initially. As
a result, this algorithm performs fairly well if the value of the integral is not
“very” close to 0 or 1.
MCMC Based Method Genz [1992] developed an algorithm of evalua-
tion for multivariate normal integral based on MCMC. He also developed a
method for easy control of the proportional error rate. The algorithm is very
fast for probabilities away from 0 and slower as the integral value decreases
to 0. As a result, computation time of high dimensional integrals (n > 10)
that usually have very small values is very long, but it still possible to find
the values.
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3.0.6 The EM Algorithm

In order to evaluate MLE, the EM algorithm is often used. The EM algo-
rithm is an iterative algorithm for finding MLE numerically in situations with
missing data. It consists of two steps, the E step and the M step. In our
model we may consider {Xi : i ∈ S} to be missing data. The E step consists
of computing

Q(ψ,ψi) =
Z

X
log[L(ψ|X,Y)]P(X|ψi ,Y)dX =

θy1Z
θy1−1

θy2Z
θy2−1

. . .

θynZ
θyn−1

|Λ|1/2exp

{
−1

2
X′ΛX

}

[
|Λi |1/2exp

{
−1

2
X′ΛiX

}
∏
j∈S

Iθi
y j−1≤x j<θi

y j

]
dx1dx2 . . .dxn,

where ψi is a current guess. In the M step the Q function is maximized with
respect to ψ to obtain ψ+ i. This algorithm also requires n-dimensional inte-
gration and as a result is not feasible either due to computational problems
discussed above.

3.0.7 Quasi-Likelihood Estimator (QLE)

Similar to Besag’s [1975] approach, we will consider approximations that
make a compromise between efficiency and computational tractability. Be-
cause of Markovian property of {Xi ; i ∈ S}, i.e. P(Xi |X−i = x−i) = P(Xi |XNi

=
xNi

), one may expect that similar approximation will work for {Yi ; i ∈ S} as
well. Following (2.21) we can define the individual log quasi-likelihood for
site i as :

l iQL(Θ,φ|yi ,yM ) = lnP(yi |yM ;Θ,φ) = ln
P(yi ,yM ;Θ,φ)
P(yM ;Θ,φ)

=

= ln

θyiR
θyi−1

θyM1R
θyM1

−1

. . .

θyMmR
θyMm

−1

|Λi,M |1/2exp
{
−1

2X′i,M Λi,M X i,M

}
dxidxM1

. . .dxMm

θyM1R
θyM1

−1

. . .

θyMmR
θyMm

−1

|ΛM |1/2exp
{
−1

2X′M ΛM XM

}
dxM1

. . .dxMm

,
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where M ≡ Ni , m = ni and ΛA[i, j] = Λ[Ai ,A j ], XA[i] = X[Ai ] for any set A.
Then the log quasi-likelihood could be computed as:

lQL(Θ,φ|Y) = ∑
i∈S

l iQL(Θ,φ|yi ,y∂i) (3.2)

As a result, we have reduced calculation of the n-dimensional integral to
calculation of 2n integrals whose dimensions are at most one more than size
of the neighborhood structure. For example, if we use “nearest-neighbor”
neighborhood (Figure 2.1), then the integral dimensions are at most 5 which
is feasible to do on today’s computers. It is still time consuming.

“Nearest-neighbor” neighborhood structure (Figure 2.1) assume that ver-
tical and horizontal dependence are identical, and any estimation methods
for this neighborhood estimate vertical and horizontal dependence at once.
Instead we may try to estimate vertical dependence first, then estimate hor-

+ =ii i

Figure 3.1: “Nearest-neighbor” neighborhood structure decomposition into
vertical and horizontal neighborhoods.

izontal and take an average of two. Such decomposition is illustrated in
Figure 3.1. Each of the resulting neighborhoods is of size 3, so numerical
calculations simplify. Additional research is needed to assess properties of
such decomposition.

3.0.8 Mean Based Approximation (MnA)

Another way to approximate the likelihood is to impute values of X. The
EM algorithm is one such approach. However, the EM algorithm is not
computationally feasible as described above. First notice that if value of X
in the neighborhood of i is known, then Yi depends only on these values:

P(Yi |Y−i = y−i ,X−i = x−i) = P(Yi |XNi
= xNi

).
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The values of X can be imputed using the marginal expected values, i.e.
µ̂X

j = E(Xj |Yj ;Θ,φ):

µ̂X
j =

φ(θy j−1)−φ(θy j )
Φ(θy j−1)−Φ(θy j )

(3.3)

where φ(·) is the standard normal PDF, and Φ(·) is the standard normal
CDF (Johnson et al. [1994]). So we can use the likelihood function

lMnA(Y) = ∑
i∈S

ln
{

P(Yi |Y−i = y−i ,X−i = µ̂X
Ni

)
}

= ∑
i∈S

ln
{

P(Yi |XNi
= µ̂X

Ni
)
}

(3.4)

= ∑
i∈S

ln





Φ




θyi −φ× ∑
j∈Ni

wi j µ̂X
i

1− φ2

ni


− Φ




θyi−1−φ× ∑
j∈Ni

wi j µ̂X
i

1− φ2

ni








.

This approximate likelihood function can be maximized with respect to ψ,
to yield the mean based estimator ψ̂MnA.

3.0.9 Median Based Approximation (MdA)

Instead of imputing xi as a marginal mean of xi given yi we can impute it as
a conditional median for a given yi . Then approximate likelihood function
will be as follows:

lMdA(Y) =
n

∑
i=1

ln





Φ




θyi −φ× ∑
j∈Ni

wi j M̂i
X

1− φ2

ni


−

Φ




θyi−1−φ× ∑
j∈Ni

wi j M̂i
X

1− φ2

ni








,

(3.5)

where

M̂(x j | y j) = Φ−1
(Φ(θy j−1)+Φ(θy j )

2

)
,

is a median of truncated normal distribution (Johnson et al. [1994]). We will
compare the performances of MnA and MdA later.
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3.0.10 Bayesian Estimation

Bayesian methods for image restoration have been studied (e.g. Geman
[1988]). These methods were used for predicting unobserved latent vari-
able X. Instead we will discuss the data augmentation technique (Tanner
[1996]) which allow us to study posterior distribution of unknown parame-
ters. Data augmentation is a computational device for obtaining posterior
distributions of the parameters of interest. It exploits the feature that the
likelihood function or posterior distribution of the parameters is very simple
when the “missing” data are augmented. The joint distribution of X and Y
given ψ is:

f (y,x|ψ) = ∏
i∈S

I{θyi−1≤xi<θyi }∏
i∈S

g(xi |xNi
: φ).

Now suppose that Θ and φ have prior densities hΘ(Θ) and πφ(φ) respec-
tively. It is also reasonable to assume that prior distributions of Θ and φ are
independent and hence the prior distribution of ψ is π(ψ) = π(Θ)π(φ). This
gives the posterior distribution of ψ given x and y as

π(ψ|x,y)∼ π(Θ)∏
i∈S

I{θyi−1≤xi<θyi }×π(φ)∏
i∈S

g(xi |xNi
: φ).

It is worth noticing that Θ and φ have independent posterior distributions.
This enables us to sample Θ and φ separately. The choice of the priors and
numerical implementation will be considered for future research.

3.1 Extension to Spatial Regression Model

An interesting question arises when we have covariates. In that case, our
spatial model becomes:

(X−βA) = φW (X−βA)+ ε,

where A is the covariate matrix, and β is the matrix of covariate coefficients.
However, let Θl(x) = (θy1−1, . . . ,θyn−1), Θu(x) = (θy1, . . . ,θyn) and Θu(x)i

} =
θyi−1, Θl(x)i

}= θyi . Then our model could be written as:

Yi = k if and only if {Θl(x)i
< Xi < Θu(x)i

}.
Now, let Z = X−βA, Θu(z) = Θu(x)−βA and Θl(z) = Θl(x)−βA. Then we can
re-write our model as:

Yi = k if and only if {Θl(z)i
< Zi < Θu(z)i

},
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Z = φZ + ε.

This is different from the previous models only in the limits of integration,
so numerical calculation of the quasi-likelihoods is unchanged.

3.2 Hypothesis Testing

One may be interested in testing whether given coefficient (φ or β) is different
from 0. In order to test this null hypotheses we may use the likelihood ratio
test. As discussed above, MLEs cannot be obtained numerically. So we may
use one of the approximation methods described.

Use of QLE, MnA and MdA makes hypothesis testing possible; however,
performance of these estimators is unknown and will be studied in future
research.

3.3 Asymptotic Properties of QLE

In the next two sections we will establish some theoretical results. Most of
the basic results are taken from Georgii [1988] and Guyon [1995].

Notation Let S= Z2, Let Dn be a sequence of toruses, |Dn| → ∞. Let a
random field over S be a probability measure µ over Dn ∈ Z2.

Suppose the field {Xi ; i ∈ S} and {Yi ; i ∈ S} are defined by 1.2 and 1.1
respectively. Then it is easy to see that X is a MRF and Y is a HMRF.

3.3.1 Ergodic Theorem

If {Yi : i ∈ s} is ergodic then asymptotic properties are easier to study. It is
easy to see that {Yi : i ∈ s} as defined in (1.1) and (1.2) is a GRF and satisfies
weak dependence Dobrushin’s condition. The proof of that result is given in
Section 4.2. However, ergodicity is a stronger result.

Theorem 1 (Ergodic Theorem for {Yi : i ∈ S}). If {Xi : i ∈ S} is defined
by (1.2), then {Yi : i ∈ S} defined by (1.1) is stationary and ergodic.

Proof. {Xi : i ∈S} is Gaussian MRF, which is stationary and ergodic, then the
result follows from Example 24.6 in Billingsley [1995] similar to Theorem
36.4 in Billingsley [1995].
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3.3.2 Consistency of QLE

To prove consistency we will use results in Guyon [1995]. It worth noticing
that results in Guyon [1995] are more general and do not require ergodicity.

Theorem 2 (Strong Consistency of QLE). If ψ̂n is QLE over Dn, |Dn|→
∞, then

lim
n→∞

ψ̂n = ψ0 a.e.

Proof. Let K(ψ0,ψ) = Eψ0

(
− ln

P(Yi=yi |YNi
=yNi

;ψ0)
P(Yi=yi |YNi

=yNi
;ψ)

)
, where ψ0 is the true value

of the parameters. We notice that

lim
n

(
1
|Dn| lQL(ψ|Y)

)
= lim

n

(
1
|Dn| ∑

i∈Dn

lnP(Yi = yi |YNi
= yNi

;ψ)

)

= Eψ0

(
lnP(Y1 = y1|YN1

= yN1
;ψ)

)
,

where the last equality follows from the fact that {Yi , i ∈ Dn} is ergodic and
lQL(ψ|Y) = lQL(Θ,φ|Y) is defined in (3.2). Then

lim
n

(
1
|Dn| lQL(ψ|Y)− 1

|Dn| lQL(ψ0|Y)
)

= Eψ0

(
lnP(Y1 = y1|YN1

= yN1
;ψ)

)

−Eψ0

(
lnP(Y1 = y1|YN1

= yN1
;ψ0)

)

= Eψ0

(
− ln

P(Yi = yi |YNi
= yNi

;ψ0)
P(Yi = yi |YNi

= yNi
;ψ)

)

= K(ψ0,ψ)≥ 0, = 0 only if ψ = ψ0,

where the inequality follows from the fact that LQL(ψ|Y) > LQL(ψ0|Y) by
definition of QLE ψn. We also may notice that for latent variable model for
spatial process with ordinal data

P(yi |yM ;ψ′ = (φ,θ′)) = ln
π(yi ,yM ;ψ′ = (φ,θ′))

π(yM ;ψ′ = (φ,θ′))
=

= ln

θyiR
θyi−1

θyM1R
θyM1

−1

. . .

θyMmR
θyMm

−1

|Λi,M |1/2exp
{
−1

2X′i,M Λi,M X i,M

}
dxidxM1

. . .dxMm

θyM1R
θyM1

−1

. . .

θyMmR
θyMm

−1

|ΛM |1/2exp
{
−1

2X′M ΛM XM

}
dxM1

. . .dxMm

,
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which is uniformly continuous in ψ.
The result follows from Theorem 3.4.3 in Guyon [1995].

3.3.3 Asymptotic Distributions of QLE

For notation purpose let us deinfe

gi(ψ̂n) =
(
lnPψ̂n(yi |yNi

)
)(1)

,

Hi(ψ̂n) =
(
lnPψ̂n(yi |yNi

)
)(2)

,

where (1) and (2) represent the vector of first derivatives, and the matrix of
the second derivatives over ψ̂n respectively. We can define quasi-information
matrices:

Jψ̂n =
1
|Dn| ∑

i∈Dn

Varψ0 [gi(ψ̂n)]

Iψ̂n = − 1
|Dn| ∑

i∈Dn

Eψ0 [Hi(ψ̂n)] ,

Following the fact that {Yi : i ∈ S} is ergodic,

lim
n

Jψn = Jψ0,

lim
n

Iψn = Iψ0,

were Jψ0 and Iψ0 are positive definite matrixes.

Theorem 3. If Dn↗Sand ψ̂n is a QLE estimator of a latent variable model
for spatial process with ordinal data as described above, then

|Dn|1/2(ψ̂n−ψ0)
D→ Np(0, Iψ0J

−1
ψ0

Iψ0) (3.6)

Proof. We may note that

|Dn|−1/2J
1
2
ψ̂n

gi(ψ̂n)
D→ Np(0, I),

which can be proved analogous to Theorem 5.3.2 in Guyon [1995] without
the additional difficulty of having to examine the complimentary term Rn.
Direct application of Theorem 3.4.5 in Guyon [1995] yields result.
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3.4 Simulation Results

We have discussed three estimators for a latent variable model for spatial pro-
cess with ordinal data. As a result, we have conducted a simulation study for
the comparison. The speed of QLE estimator depends on the neighborhood
size. It is fast for time series data (1 point neighborhood).As a result, we
will first compare QLE with MdA for time series data for data consisted of
100 points. Results can be found in Figures 3.2-3.4. These figures compare
MLEX based on unobserved, but simulated X, QLE and MdA. Figure 3.2
is based on 1000 simulation of time series of length 100 with cut off points
θ =

(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 1

3. Comparing means
of the estimates, there is a small bias is introduced by QLE and MdA com-
paring with MLEX. Variance doubles when we compare QLE and MdA with
MLEX. However, there is no increase in variance between QLE and MdA, the
reason for this is probably are due to numerical approximations. Calculation
of QLE involves bivariate normal CDF, which have larger computational er-
rors than univariate CDF required by MdA calculations. Figure 3.3 shows
result of similar simulations, but for correlation coefficient φ = −1

3. We can

observe symmetry with case φ = 1
3. Figure 3.4 shows result of similar simu-

lations, but for correlation coefficient φ = 0. Here QLE performs worse. The
reason will be studied. In summary we can see that there are no significant
losses observed between QLE and MdA.

Next, we will compare MdAwith MnA. We will use simulated data similar
to one discussed above, but on squares of size 20×20and 40×40. Results can
be found in Figures 3.5-3.9. We can see that there is no significant difference
observed between MnA and MdA. In these examples MLE(X) represents
the MLE from the unobserved (but simulated) X variable. MnA and MdA
perform reasonably well comparing to MLE(X).
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MLE(X), size=100, k=3, mean = 0.3258, median = 0.3314, var = 0.0095

Phi, True Phi=0.3333, sim=1000

R
el

at
iv

e 
F

re
qu

en
cy

−0.2 0.0 0.2 0.4 0.6

0
1

2
3

4
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MdA(Y), size=100, k=3, mean = 0.3124, median = 0.3214, var = 0.0149
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Figure 3.2: Simulation result for QLE and MdA comparison for time se-
ries data of 100 observation and three category with cut off points θ =(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 1

3 based on 1000 simu-
lations.
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MLE(X), size=100, k=3, mean = −0.3292, median = −0.3317, var = 0.0088

Phi, True Phi=−0.3333, sim=1000

R
el

at
iv

e 
F

re
qu

en
cy

−0.6 −0.4 −0.2 0.0

0
1

2
3

4

PLE(X), size=100, k=3, mean = −0.3687, median = −0.3806, var = 0.0134
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MdA(Y), size=100, k=3, mean = −0.3363, median = −0.3247, var = 0.0142

Phi, True Phi=−0.3333, sim=1000
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Figure 3.3: Simulation result for QLE and MdA comparison for time se-
ries data of 100 observation and three category, with cut off points θ =(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ =−1

3 based on 1000simula-
tions.
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MLE(X), size=100, k=3, mean = 9e−04, median = 0.0046, var = 0.0109

Phi, True Phi=0, sim=1000
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PLE(X), size=100, k=3, mean = −0.0192, median = −0.0203, var = 0.0209
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MdA(Y), size=100, k=3, mean = −0.0052, median = 0, var = 0.0173
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Figure 3.4: Simulation result for QLE and MdA comparison for time se-
ries data of 100 observation and three category, with cut off points θ =(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 0 (i.e. no spatial depen-

dence), based on 1000simulations.
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MLE(X), size=20x20, k=3, mean = 0.324, median = 0.3264, var = 0.0163

Phi, True Phi=0.3333, sim=2000
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MnA(Y), size=20x20, k=3, mean = 0.3075, median = 0.312, var = 0.0251

Phi, True Phi=0.3333, sim=2000
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MdA(Y), size=20x20, k=3, mean = 0.3451, median = 0.3505, var = 0.0314

Phi, True Phi=0.3333, sim=2000
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Figure 3.5: Simulation result for MnA and MdA comparison for time se-
ries data of 20× 20 observation and three category, with cut off points
θ =

(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 1

3, based on 2000sim-
ulations.
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MLE(X), size=20x20, k=3, mean = −5e−04, median = 0.0013, var = 0.0174

Phi, True Phi=0, sim=2000
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MnA(Y), size=20x20, k=3, mean = −0.0111, median = −0.0059, var = 0.0259

Phi, True Phi=0, sim=2000
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MdA(Y), size=20x20, k=3, mean = −0.0125, median = −0.0066, var = 0.0328

Phi, True Phi=0, sim=2000
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Figure 3.6: Simulation result for MnA and MdA comparison for time se-
ries data of 20× 20 observation and three category, with cut off points
θ =

(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 0, based on 2000sim-

ulations.
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MLE(X), size=20x20, k=3, mean = −0.3264, median = −0.328, var = 0.0149

Phi, True Phi=−0.3333, sim=2000
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MnA(Y), size=20x20, k=3, mean = −0.3328, median = −0.3357, var = 0.0231

Phi, True Phi=−0.3333, sim=2000
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MdA(Y), size=20x20, k=3, mean = −0.3734, median = −0.3769, var = 0.0288

Phi, True Phi=−0.3333, sim=2000
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Figure 3.7: Simulation result for MnA and MdA comparison for time se-
ries data of 20× 20 observation and three category, with cut off points
θ =

(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = −1

3, based on 2000
simulations.
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MLE(X), size=20x20, k=3, mean = 0.6449, median = 0.6491, var = 0.0095

Phi, True Phi=0.6667, sim=2000
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MnA(Y), size=20x20, k=3, mean = 0.6326, median = 0.6376, var = 0.0176

Phi, True Phi=0.6667, sim=2000

R
el

at
iv

e 
F

re
qu

en
cy

0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

MdA(Y), size=20x20, k=3, mean = 0.7032, median = 0.7106, var = 0.0206
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Figure 3.8: Simulation result for MnA and MdA comparison for time se-
ries data of 20× 20 observation and three category, with cut off points
θ =

(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 1

6, based on 2000sim-
ulations.
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MLE(X), size=20x20, k=3, mean = 0.3314, median = 0.3333, var = 0.0041

Phi, True Phi=0.3333, sim=2000

R
el

at
iv

e 
F

re
qu

en
cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
1

2
3

4
5

6

MnA(Y), size=20x20, k=3, mean = 0.3267, median = 0.3283, var = 0.0064

Phi, True Phi=0.3333, sim=2000
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MdA(Y), size=20x20, k=3, mean = 0.3672, median = 0.3692, var = 0.008

Phi, True Phi=0.3333, sim=2000
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Figure 3.9: Simulation result for MnA and MdA comparison for time se-
ries data of 40× 40 observation and three category, with cut off points
θ =

(
Φ−1

(1
3

)
,Φ−1

(2
3

))
and correlation coefficient φ = 1

3, based on 2000sim-
ulations.
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Chapter 4

Technical Details

4.1 Technical Details for Gibbs Random Fields

(GRF)

The Gibbs field (or measure) dates back to Dobrushin and Folguera [1968]
and it is highly used in Statistical Physics. In probabilistic term, a Gibbs
measure is nothing other than the distribution of conditional probabilities.
We will look at two specifications of Gibbs Fields.

4.1.1 Conditional Specification

Definition (Conditional Kernel). If µ is a random field, for each V ∈ S ,
we can define the conditional kernel

µV(·|·) : F (V)×Ω(S\V)→ [0,1]. (4.1)

Here F (V) stands for σ algebra of configuration over V, and Ω(S\V) is the
space of V external configuration. In general this kernel is not well defined.

Definition (Coherence of Kernels). Let V ⊆ U be two elements of S ,
and let πV and πU be two conditional kernels relative to V and U , A∈ F (V),
B∈ F (U\V) and z∈Ω(S\U). Composition of both kernels is another kernel
over U defined by

(πUπV)(AB|z) =
Z

B
πV(A|yz)πU(EV ,dy|z). (4.2)
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For the family {µV} defined by the field µ, one has

µUµV = µU (4.3)

We say this family is coherent.

Definition (Conditional Specification). Any family of kernels π = {πV ,V ∈
S} is called conditional specification if it satisfies condition (4.3).

4.1.2 Gibbs Specification

Definition (Interaction Potential). Interaction potential is defined by a
family φ = {φA,A∈ S} of applications

φA : Ω(A)→ R s.t. (4.4)

(i) For every A, φA is F (A) measurable

(ii) If Λ ∈ S and w∈Ω then the sum

Uφ
Λ(w) = ∑

A∈S :A∩Λ 6=0

φA(w) exists. (4.5)

−Uφ
Λ(w) is called the energy of w in Λ. φ is λ−admissible if for all Λ ∈ S ,

w∈Ω,

Zφ
Λ(w) =

Z
Ω(Λ)

expUφ
Λ(wΛ,wS\Λ)λΛ(dwλ) < ∞. (4.6)

Definition (Gibbs Specification Associated to a Potential φ). If φ is
admissible, the family

πφ
Λ(wΛ|wS\Λ) = Zφ

Λ(w)expUφ
Λ(wΛ,wS\Λ),Λ ∈ S (4.7)

is coherent. {πφ
V ,V ∈ S} is called the Gibbs specification associated to a

potential φ.

The proof of coherence can be found in Guyon [1995]
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4.1.3 Unicity: Dobrushin’s Condition of Weak Depen-
dence

Definition (Total Variation Norm). Let (E,E) be a measurable space
and
h,g∈ P(E,E). Then the total variation norm is defined as:

‖h−g‖= sup
A∈E

|h(A)−g(A)|

Definition (Dobrushin’s Influence Measure). Let a and b be two sites
of S, a 6= b. Define for a specification π

γa,b(π) = sup
1
2
‖πb(·|w)−πb(·|w′)‖. (4.8)

Here the total variation is taken over all configurations w, w′ that are
identical except at site a. γa,b(π) is a measure of the influence of a site a over
the conditional distribution πb(·|·) in b

Condition (Dobrushin’s Condition). Gibbs fields satisfy Dobrushin’s
condition if each potential is quasi-local and if

α(φ) = sup
a∈S

∑
b∈S

γa,b(φ) < 1. (4.9)

Dobrushin’s condition guarantees unicity of the Gibbs state (Georgii [1988]).
However, it is helpful to note that Dobrushin’s condition is only a sufficient
and not a necessary condition. In practice, most of the useful GRF satisfies
this condition, which also defines weak dependence necessary for asymptotic
convergence of estimators.

4.1.4 Reconstruction of a Specification π Given By Its
Specification π{i} for Each Site i ∈ S

In practice, a random field is often specified by a conditional distribution of
a site i, given all other sites. A question arises whether this specification
will yield a joint distribution. Guyon [1995] provides a Theorem 2.5.1, stated
below:

Theorem (Guyon [1995]). Next two conditions are true:
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(a) Assume that for all x ∈ Ω, π(x) > 0. Then π is only determined by its
conditional distributions πi , i ∈ S.

(b) A family of conditional distribution {πi , i ∈ S} in general does not induce
a joint distribution.

More general result also can be found in Georgii [1988]

4.2 Technical Details for HMRF

4.2.1 HMRF is GRF

Lemma 1. Let X be a MRF over S. Let Y be HMRF. Then Y is also a Gibbs
field.

Proof. Joint distribution of Y is defined by uniquely π(Y)=
R

∏
i∈S

π(yi |xi ,θ)π(X,ψ) dX,

which makes Y a GRF by definition. However, potentials are usually numer-
ically untraceable.

4.2.2 Dobrushin Condition for HMRF

Lemma 2. Assume X is a MRF then Y : π(y|x) = ∏
i∈S

π(yi |xi) satisfies the

Dobrushin condition (4.9). In addition the joint GRF {X,Y} also satisfies
Dobrushin condition (4.9).

Proof. The intuition is that the Dobrushin condition defines weak depen-
dence and dependence among Y is defined through X, so it is weaker than
dependence along X. As a result, Y will satisfy any dependence condition for
X.

First, we will prove that {Y,X} satisfies (4.9). Let us look at Dobrushin

43



measure:

γ{Y,X}
{i, j} = sup

x,y

1
2
‖π(xi ,yi |x j ,y j ,x−{i, j},y−{i, j})

−π(xi ,yi |x′j ,y′j ,x−{i, j},y−{i, j})‖
= sup

x,y

1
2
‖π(yi |xi ,x j ,y j ,x−{i, j},y−{i, j})π(xi |x j ,y j ,x−{i, j},y−{i, j})

−π(yi |xi ,x
′
j ,y

′
j ,x−{i, j},y−{i, j})π(xi |x′j ,y′j ,x−{i, j},y−{i, j})‖

= sup
x,y

1
2
‖π(yi |xi)π(xi |x j ∪x∂i)−π(yi |xi)π(xi |x′j ∪x∂i)‖

≤ sup
x

1
2
‖π(xi |x j ∪x∂i)−π(xi |x′j ∪x∂i)‖= γ{X}{i, j},

then by definition of the Dobrushin condition (4.9),

α{X,Y}(φ) = sup
a∈S

∑
b∈S

γ{X,Y}
a,b (φ)≤ sup

a∈S
∑
b∈S

γ{X}a,b (φ) = α{X,Y}(φ)

Now we will prove that {Y} satisfies (4.9). Again looking at the Dobrushin
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measure:

γ{Y}{i, j} = sup
y

1
2
‖π(yi |y j ,y−{i, j})−π(yi |y′j ,y−{i, j})‖

= sup
y

1
2

∥∥∥∥∥
Z

π(yi |y j ,y−{i, j},x)π(x|y j ,y−{i, j}) dx

−
Z

π(yi |y′j ,y−{i, j},x)π(x|y′j ,y−{i, j}) dx

∥∥∥∥∥

= sup
y

1
2

∥∥∥∥∥
Z

π(yi |xi)π(y j ,y−{i, j},x)π(y j ,y−{i, j}) dx

−
Z

π(yi |xi)π(y′j ,y−{i, j},x)π(y′j ,y−{i, j}) dx

∥∥∥∥∥

= sup
y

1
2

∥∥∥∥∥
Z

π(yi |xi)π(y j |x j) ∏
k6=i, j

π(yk|xk)π(y j ,y−{i, j})π(x) dx

−
Z

π(yi |xi)π(y′j |x j) ∏
k6=i, j

π(yk|xk)π(y′j ,y−{i, j})π(x) dx

∥∥∥∥∥

= sup
y

1
2

∥∥∥∥∥
Z [

π(y j |x j)π(y j ,y−{i, j})−π(y′j |x j)π(y′j ,y−{i, j})
]×

×π(yi |xi) ∏
k6=i, j

π(yk|xk)π(x) dx

∥∥∥∥∥

≤ sup
y

1
2

∥∥∥∥∥
Z

π(y j |x j)π(yi |xi) ∏
k6=i, j

π(yk|xk)π(x) dx

∥∥∥∥∥

= sup
y

1
2

∥∥∥∥∥
Z

π(y|x)π(x) dx

∥∥∥∥∥

≤ sup
x,y

1
2
‖π(x,y)‖= γ{Y,X}

{i, j} ≤ γ{X}{i, j}

And finally,

α{Y}(φ) = sup
a∈S

∑
b∈S

γ{Y}a,b (φ)≤ sup
a∈S

∑
b∈S

γ{X}a,b (φ) = α{X}(φ)
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4.2.3 Simon’s Condition for HMRF

The Dobrushin condition is not always easy to obtain. A stricter condition,
based directly on the potentials was given by Simon [1979]. If λ is a finite
measure over (E,E), and φ is a continuous λ-admissible potential such that:

sup
i∈S

∑A3 i(|A|−1)δ(φA) < 2

then the Dobrushin’s condition is satisfied.

Lemma 3. Assume X is MRF then Y : π(y|x) = ∏
i∈S

π(yi |xi) satisfies Simon’s

condition. In addition the joint GRF {X,Y} also satisfies Simon’s condition.

Proof. Proof is identical to the proof of the Lemma 2.
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Chapter 5

Summary and Future Research

This section describes some of the areas I plan to explore as part of future
research.

I have introduced several methods of inference for the ordinal data under
the latent variable method. The consistency and asymptotic normality of
the quasi-likelihood estimator has been established. Asymptotic properties
of the other methods have to be studied. Limited simulation results show that
the mean and median-based approximations have reasonably good efficiency
in addition to being computationally fast. A more extensive study will be
conducted to compare the properties of these methods and also of other
quasi-likeliehood based methods.

An alternative approach to analyzing ordinal data is to use Strauss’ model
for categorial (mulitcolor) spatial data with suitable constraints on the de-
pendence coefficients βkl’s between adjacent categories. I will compare the
advantages and disadvantages of this approach with that based on the latent
variable model.

As noted earlier, in many applications, the mean structure of the latent
variable can vary according to some covariates. It is then of interest to model
and make inferences for the regression relationship based on the ordinal data.
One application is the study of spatial patterns in wafermaps in semiconduc-
tor manufacturing. Methods for estimation and tests of hypothesis will be de-
veloped. Since likelihood ratio procedures are not computationally tractable,
we will study the use of quasi-likelihood and other approximations.

Finally, Bayesian inference using data augmentation is a natural alter-
native in this problem. One can consider the unboserved latent varaible as
missing data. I have already made some progress in this direction.
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